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SUMMARY

In this paper a numerical method to compute time-dependent flows in helically coiled pipes with circular
cross-section and constant curvature k and torsion t is presented. The incompressible Navier–Stokes
equations, explicitly derived in an orthogonal helical co-ordinate system, are integrated numerically. The
results show for example, the influence of curvature and torsion on the axial velocity profile. Good
agreement with experiment is found. The numerical simulations also allow a detailed study of the
secondary motion in the cross-section of the pipe by considering vector plots and contour lines of the
streamfunction. Furthermore, the formation of a pressure distribution perpendicular to the pipe axis is
shown. Besides the Reynolds number, other characteristic flow parameters, like the Dean numer De, and
the Germano number Gn, are used to compare the flow through different pipe configurations. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid flow through curved or helically coiled pipes is very common. It can be found in nature,
e.g. in blood vessels, particularly the aorta, the trachea or in water ducts for plants. Curved
pipes, bends and coils are also of great importance in industrial applications in many branches
of engineering. Heat exchangers, chemical reactors, exhaust gas ducts of engines, cooling
channels in the nozzle of a rocket engine or any kind of pipelines, tubes and conduits
transporting gases and liquids profit from the use of curved or helically coiled pipes due to the
possibility of satisfying space and/or geometric requirements, and due to the characteristics of
the induced secondary flow, which influences the heat and mass transfer.

The subject of the present investigation is the steady state, fully developed laminar flow of
an incompressible, Newtonian fluid in several pipes with circular cross-section, constant
curvature k and torsion t. Although the theoretical and experimental investigation of flow in
pipes with curvature and torsion in a systematical way is of recent origin, this flow configura-
tion has always been classified as even more complex than the flow through straight ducts.
Williams et al. [1] notice that the position of maximum axial velocity is moved towards the
outer wall of a curved pipe because of centrifugal forces. Later, Eustice [2,3] demonstrated the
existence of a secondary flow by injecting ink into water, flowing through a coiled pipe.
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Due to the lack of supercomputers some decades ago, the investigators were unable to solve
the Navier–Stokes equations numerically. Besides experiments, only analytical solutions of
simplified equations were used to investigate the flow in curved and coiled pipes. Dean [4,5]
derived a solution of the flow in loosely coiled (k�1) pipes and showed the typical secondary
flow pattern with two recirculation zones. Besides the Reynolds number Re, a new parameter,
which characterizes the magnitude and shape of the secondary motion through a torus, was
found. Later, this parameter was defined as the Dean number De=k1/2Re. For three
differently curved pipes, Adler [6] presented experimental results of laminar and turbulent
flow. Since then, a few investigations were reported of toroidal flows without considering
torsion effects, e.g. [14]. A good survey of the voluminous research activities in this area and
related topics is given by Berger et al. [7] and additional aspects can be found in Ito [8].

Wang [9] solved helical flow problems with small curvature and small torsion using a
perturbation method based on a non-orthogonal helical co-ordinate system. By extending the
Dean equations to a helical pipe flow, Germano [10,11] studied the same problem by
introducing an orthogonal co-ordinate system. In order to describe the torsion effect on the
flow, a third dimensionless parameter has been defined: the torsion number or the Germano
number Tn=Gn=tRe. In an extensive study of helical pipe flow by using a separation
method, Liu and Masliyah [12] showed that another dimensionless group of parameters
emerges. The critical values l\0.2 and l*\0.039 of the Liu–Masliyah parameters l=
GnDe−3/2 for De]20 and l*=GnDe−2 for DeB20 mark the change of the secondary flow
pattern from two vortices to one vortex.

In this study a finite volume method on a three-dimensional staggered grid with a
semi-implicit time integration scheme is used to study the laminar flow in straight, curved and
helically coiled pipes for different pipe geometries and flow conditions. This study concentrates
on steady, fully developed helical pipe flow with periodic in- and outflow boundary conditions.
Since this flow is axially invariant, it changes only in the circular cross-section of the pipe.
Contour lines and profiles of the axial velocity will be presented. The profiles are compared
with experimental results. The induced secondary flow is demonstrated by means of vector
plots and contour lines of the streamfunction. Furthermore, the formation of a pressure
distribution perpendicular to the pipe axis is also shown by contour lines.

2. GEOMETRY AND GOVERNING EQUATIONS

The geometry of a helical pipe can be viewed as a pipe of radius R, wound around a cylinder
of constant radius (ra−R) (see Figure 1). With the pitch ps, defined by the increase in
elevation per revolution of coils 2pps, the curvature k and the torsion t of the helical pipe axis
can be calculated from

k=
ra

(ra
2+ps

2)
(1)

and

t=
ps

(ra
2+ps

2)
. (2)

As introduced by Germano [10,11], a helical co-ordinate system can be established in
reference to the master Cartesian co-ordinate system. By using the helical co-ordinates s for
axial direction, r for radial direction and u for circumferential direction, the position of any
given point X inside the helical pipe can be described by the vector x� as:
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Figure 1. Helically coiled pipe.

x� =Pb (s)−r sin(u−ts)Nb (s)+r cos(u−ts)Bb (s). (3)

Here Tb , Nb and Bb are the tangential, normal and binormal directions to the generic curve of
the pipe axis at the point of consideration (see Figure 2). The metric of the orthogonal helical
co-ordinate system is given by

dx� ·dx� = (1+kr sin(u−ts))2 ds2+dr2+r2 du2, (4)

where ds, dr and du are the infinitesimal increments in the axial, radial and circumferential
directions. With this metric, one obtains the scale factors hs, hr and hu, that are used to express
the Navier–Stokes equations in helical co-ordinates:

hs=1+kr sin(u−ts), (5)

hr=1, (6)

hu=r. (7)

The Navier–Stokes equations read in an orthogonal helical co-ordinate system [13]:

Figure 2. Description of the orthogonal helical (s, r, u) coordinate system, as introduced by Germano [10,11].
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Continuity equation :
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They are written in dimensionless form. The pipe radius R, the mean friction velocity ut and
the time tref=R/ut are used as scaling variables. The dimensionless mass density is set to 1.
The mean friction velocity is defined as the square root of the mean wall shear stress as
follows:

ut=
'tw,m

r
, (12)

tw,m=
1

2p

& 2p

u=0

tw(u) du. (13)
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The dimensionless curvature k=Rk % and torsion t=Rt % are non-dimensionalized by the pipe
radius R.

The Reynolds, Dean and Germano numbers based on these scaling quantities are:

Ret=
Rut

n
, (14)

Det=
kRet, (15)

Gnt=tRet. (16)

3. NUMERICAL METHOD AND BOUNDARY CONDITIONS

A finite volume method on staggered grids is used to discretize the spatial derivatives and
source terms in the governing equations. It leads to central differences of second-order
accuracy for the mass and momentum fluxes across the cell faces. A semi-implicit time-integra-
tion scheme treats all those convection and diffusion terms implicitly that contain derivatives
in the u-direction. The remaining convection terms are integrated in time with a second-order-
accurate leapfrog step. An averaging step of all the 50 time steps avoids possible 2Dt
oscillations. Diffusive terms with derivatives in the s- and r-directions are treated with a
first-order Euler backward step. The size of the time step is selected according to a linear
stability argument. The use of a projection step leads to a 3D Poisson problem for the pressure
correction, which is solved by a conjugate gradient method for unsymmetric matrices.

Boundary conditions are required for all boundaries of the computational domain. At the
walls, impermeability and no-slip boundary conditions are realized. Velocity components that
are needed on the pipe axis are obtained by interpolation across the axis. In the circumferential
direction, all variables are periodic by definition. In the axial direction, periodic boundary
conditions are used. For helically coiled pipes, the rotation of the co-ordinate system along the
pipe axis must be taken into account and the perfect matching of the cells at the in- and
outflow boundaries must be ensured by choosing a suitable combination of axial length and
number of grid points in the u-direction (see Figure 3).

The flow is driven in the axial direction by means of a pressure gradient DP/Ds, which must
balance the viscous friction along the pipe wall.

4. COMPUTATIONAL DETAILS

The length of the computational domain Ds along the axial co-ordinate s was taken to be 0.5R
for toroidal pipe flow. For helical pipe flow, it was between 0.1257R and 125.7R as it has to
satisfy the condition

Ds=n ·
2p

nut
, n=1, 2, 3, . . . (17)

in order to fulfill the cell matching. The grid has nr=50 points in radial, nu=50 points in
circumferential and ns=10 (5) points in the axial direction for helical (toroidal) pipe flow.

The Reynolds numbers

Reb=
2ubR

n
, (18)
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Figure 3. Visualisation of the rotation of the (u, r) co-ordinate system along the axis.

Figure 4. Simulated pipe configurations with Reb=1000.
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based on bulk velocity ub and pipe diameter 2R were varied over the whole laminar flow
regime. In this paper, only simulations with Reb=1000 are presented. The curvature k ranges
from 0 to 0.99 and the torsion t from 0 to 1.0, see Figure 4.

The Dean number Deb, and Germano number Gnb built with this Reynolds number are

Deb=
kReb, (19)

Gnb=tReb. (20)

The simulations were started from a velocity profile for laminar flow in a straight pipe and
were terminated when the flow field had converged at the iteratively adjusted Reynolds
number Reb. Figure 5 shows the fast convergence of the Reynolds number Ret for Reb=
1000, k=t=0 to the Reynolds number Ret=44.7 for fully developed laminar flow in a
straight pipe given by

Ret=
2Reb. (21)

The computations are carried out on a Fujitsu VPP500 at HLRZ Darmstadt and the Cray
Y-MP and Cray T94 at LRZ, München.

5. NUMERICAL RESULTS

5.1. Laminar flow in cur6ed pipes

In a straight pipe, the fully developed flow has a parabolic profile for the axial velocity with
the maximum at the pipe axis and no radial or circumferential velocity components. The flow
in a torus is influenced by a centrifugal force due to curvature. The centrifugal force on a flow
particle is proportional to its velocity squared and the curvature of the particle path. Near the
wall, where the velocity is small, the centrifugal force is also small. In the core of the torus
cross-section, where the velocity is high, the centrifugal force accelerates the flow outwards to
the wall. In principle, the centrifugal force is balanced by a pressure gradient in the plane
perpendicular to the pipe axis. However, near the wall this pressure gradient can no longer be
balanced by the flow and consequently the flow is forced inwards and finally towards the
center of the torus. Due to continuity, the rapidly moving central part of the flow is forced
outward. The flow in the plane perpendicular to the mean flow is called the secondary flow.
If the curvature is significant, the axial velocity profile will be completely altered by this
secondary motion and a considerable increase in drag is observed. Figure 6(a) shows contour
lines of the axial velocity that are symmetric to the horizontal axis. The position of the
maximum is forced outwards and the contour lines, which would be circles for flow in a
straight pipe, are deformed. Contour lines of the pressure (Figure 6(b)) are almost rectilinear
and perpendicular to the horizontal axis in the core of the cross-section. The secondary flow
can also be visualized by vector plots (Figure 6(c)) or contour lines of the streamfunction
(Figure 6(d)). It can easily be seen that the flow moves outwards in the core region and
inwards at the wall. The bifurcation at the outer wall and the confluence at the inner wall
divide the upper and lower half of the cross-section into two symmetric recirculation cells,
called the Dean cells. The magnitude and shape of the secondary motion, and therefore the
shape of the axial velocity, depend on the Dean number De of the flow. Figure 7 shows the
influence of the Dean number on the axial velocity profile along the horizontal axis (top) and
the vertical axis (bottom) of the cross-section. With increasing De, the position of the
maximum axial velocity is forced to the outer wall and its value decreases. The vertical cut

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 749–763 (1999)
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Figure 5. Convergence of the iteratively adjusted Reynolds number Reb=1000, k=0, t=0.

Figure 6. Laminar flow in a curved pipe, Reb=1000, k=0.01; (a) axial velocity us,max=15.9, (b) pressure pmin= −
0.75, pmax=1.65, (c) vector plot of the secondary flow, (d) contour lines of the streamfunction.
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Figure 7. Profiles of the axial velocity for Reb=1000: (I) k=0, Deb=0, (II) k=0.001, Deb=31.62, (III) k=
0.01, Deb=100, (IV) k=0.1, Deb=316.22; top, horizontal cut (A–A); bottom, vertical cut (B–B).

shows the change of the parabolic profile to a more flat profile with two local maxima near
the wall. The increase in the radial gradient of the axial velocity leads to an increase of drag
in curved pipes.

The axial velocity profiles can be used to compare the numerical results with the experiments
performed by Adler [6]. Both cases Reb=1930, k=0.02 and Reb=3220, k=0.005 show
good agreement between simulation and experiment (see Figure 8).

5.2. Laminar flow in helically coiled pipes

The flow in curved pipes is influenced by the centrifugal force, a kind of inertia force. The
inertia forces have a more complicated effect on the flow when the bounding geometry of the
pipe wall is more complex. In helically coiled pipes, the plane of curvature moves and rotates
and therefore, the direction of the inertia force changes along the axis. For loosely coiled pipes
with small curvature k50.01 and small torsion t50.01, the effect of curvature is dominant
and the torsion effect is negligible.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 749–763 (1999)
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Figure 8. Comparison of axial velocity profiles of the numerical simulations (lines) with experiments by Adler [6]
(symbols). Upper profile, Reb=3220, k=0.005, Deb=227.7; lower profile, Reb=1930, k=0.02, Deb=272.9.

Figure 9. Contour lines of axial velocity of flow through helically coiled pipes: Reb=1000, k=0.01; (a) t=0.01; (b)
t=0.0995; (c) t=0.13; (d) t=1.0.
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Figure 10. Contour lines of the pressure distribution in a cross section of helically coiled pipes: Reb=1000, k=0.01;
(a) t=0.01; (b) t=0.0995; (c) t=0.13; (d) t=1.0.

With the increase of torsion, the torsion effect becomes visible. Figure 9 shows contour
lines of axial velocity profiles for fixed Reynolds number Reb=1000 and fixed curvature
k=0.01. For small values of torsion, the symmetric pattern is just slightly rotated counter-
clockwise. With increasing torsion, the counter-clockwise rotation gets bigger, the pattern is
slightly deformed and the symmetry is destroyed. Additionally, increasing the torsion, re-
sults in strongly distorted contours of the axial velocity with a maximum moving in coun-
ter-clockwise direction. Finally, the position of the maximum of the axial velocity moves
back to the axis leading to contour lines that are similar to those of straight pipe flow.

It is known from curved pipe flow that in a cross-section, perpendicular to the pipe axis,
a pressure distribution is built up, which is symmetric with respect to the plane in which
the axis lies. For increasing torsion, the formerly nearly rectilinear contour lines of the
pressure become curved and more complex (see Figure 10). The formation of a local
pressure minimum can be observed for higher Germano numbers. This pressure mini-
mum rotates counter-clockwise with increasing torsion and finally disappears again (Figure
10(d)).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 749–763 (1999)
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An even stronger effect has the torsion on the secondary flow. Figure 11(a) shows that the
secondary flow consists of two vortices. An increase in torsion results in the lower vortex
gaining in size. The upper vortex becomes very small and weak and Liu and Masliyah [12]
observed that the upper cell can disappear. For further increases in torsion, the upper vortex
starts to gain in size and strength and the positions of the two vortices are left and right. In
the core of the cross-section, the secondary flow is very strong and its direction is upward,
while its direction at the inner and outer walls is downward.

The variation of the axial wall shear stress distribution along the pipe wall circumference is
shown by polar diagrams in Figure 12. Here, the value of the axial wall shear stress is the polar
distance from the origin of each plot. In a straight pipe, the wall shear stress is uniformly
distributed. For curved pipe flow, the axial wall shear stress is higher near the outer wall and
lower near the inner wall. For helically coiled pipes, the maximum axial wall shear stress
moves towards the inner upper wall.

The good agreement between the present simulation and the simulation performed by Liu
and Masliyah [12] is presented in Figure 13. These authors predicted the same location of the

Figure 11. Vector plots of the secondary flow through helically coiled pipes: Reb=1000, k=0.01; (a) t=0.01 b)
t=0.0995 c) t=0.13 d) t=1.0.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 749–763 (1999)
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Figure 12. Polar diagram of the axial wall shear stress distribution across the pipe wall circumference for straight,
curved and helically coiled pipe.

maximum of the axial velocity and the position of the secondary flow cells. In a perspective
plot of the pressure the local minimum can be seen very clearly.

6. CONCLUSIONS

In order to predict the flow in helically coiled pipes, a finite volume code was developed that
integrates the incompressible Navier–Stokes equations in an orthogonal helical co-ordinate
system. Several flow configurations, namely curved pipes and helically coiled pipes, were
simulated and compared. The movement of the position of maximal axial velocity to the outer
wall with increasing curvature and the distortion of the contour lines with increasing torsion
was shown in detail. The origin of secondary flow with two recirculation cells due to curvature
effects and the change of the secondary flow pattern due to torsion effects has been visualized.
A comparison with experiments by Adler [6] showed good agreement.

As a next step, direct numerical simulation of fully developed turbulent flow in coiled pipes
is envisaged with the aim of studying turbulent transport, production, dissipation and
redistribution mechanisms.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 749–763 (1999)
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Figure 13. Comparison of the present simulations (right) with the simulations performed by Liu and Masliyah [12] for
Reb=1000, Deb=100, Gnb=150. First line: axial velocity component; second line: secondary flow vectors; third line:

pressure distribution in a cross-section.
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